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Abstract
It is proved that for nonlinear evolution with a singular dispersion relation,
Leon’s extension of the inverse spectral transform is equivalent to the ∂̄-
dressing problem with variable normalization, at least in a subclass of dispersion
relations.

PACS numbers: 0230T, 0230Z

1. Introduction

The ∂̄-dressing method proposed by Zakharov and Shabat has been used successfully to solve
(1 + 1)- and (2 + 1)-dimensional nonlinear evolutions [1]. Several extensions of the ∂̄-dressing
method have been considered [2–4]. Among these, the spectral transform method which
includes nonlinear evolution when the (x, t) dependence of the spectral transform is arbitrary,
was developed by Leon [5]. The method was shown to be effective, and was used to derive
a new class of solutions to the nonlinear Schrödinger equation, and to solve initial boundary
value problems for resonant wave coupling processes in stimulated Brillouin scattering of
plasma waves and stimulated Raman scattering in nonlinear optics [6–9].

The main purpose of this work is to answer the following simple problem: are there some
relations between Leon’s extension and the ∂̄-dressing method with variable normalization?
We shall prove, in particular, that Leon’s result can be easily extended to a 2 + 1 non-local ∂̄-
problem, and for nonlinear evolution having a singular dispersion relation Leon’s extension of
the inverse spectral transform is equivalent to a ∂̄-dressing problem with variable normalization.

At first we briefly recall Leon’s idea. For the (1 + 1)-dimensional local ∂̄-problem

∂χ

∂λ̄
(x, λ) = χ(x, λ)R(x, λ). (1)

Leon’s extension from the usual ∂̄-dressing approach is that the homogeneous time–spatial
evolutions for spectral transform operator R

∂

∂x
R = [R,�]

∂

∂t
R = [R,�]

(2)
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are replaced by the inhomogeneous time–spatial relations

∂

∂x
R = [R,�] + N

∂

∂t
R = [R,�] + M

(3)

where � and � are matrix-valued dispersion operators which determine the dispersion relation
of the corresponding spectral problem. It can be proved that the matrices N and M obey the
compatibility constraint

Nt − [N,�] − Mx + [M,�] = [�t − �x + [�,�], R]. (4)

It was shown by Leon that equation (4) is satisfied if N and M satisfy

N = ∂

∂λ̄
� M = ∂

∂λ̄
� (5a)

and

�t − �x + [�,�] = 0. (5b)

In particular, for the case where the dispersion operators � and � take polynomial form, the
matrices N and M vanish.

2. Leon’s extension of the 2 + 1 ∂̄-dressing problem

Instead of equations (1) and (3) for the (1 + 1)-dimensional problem, we start from the general
2 + 1 non-local ∂̄-problem with variable normalization (the variable x denotes the 3-vector xj ,
j = 1, 2, 3)

∂χ

∂λ̄
(λ, λ̄; x) = ∂η

∂λ̄
+ R̂ ∗ χ (6)

where the spectral transform operator R̂ is a linear integral operator acting like

(R̂ ∗ χ)(λ, λ̄) =
∫ ∫

c

dµ ∧ dµ̄ χ(µ, µ̄) R(µ, µ̄; λ, λ̄; x) (7)

and η(λ) is, in general, an arbitrary rational function of λ. The role of this function is to fix the
normalization of the function χ and then to make the problem’s solution uniquely determined.

By analogy with the 1 + 1 problem, the time and space dependence of the 2 + 1 spectral
transform is defined by

∂

∂xi
R̂ = [R̂, B̂∗

i ] + N̂i i = 1, 2, 3 (8)

where B̂∗
i , i = 1, 2, 3, are the adjoint operators of B̂i with respect to the standard bilinear form

〈f, g〉 = ∫
dξ tr(f (ξ)g(ξ)). These operators act as

(B̂iχ)(λ, λ̄) =
∫ ∫

c

dµ ∧ dµ̄ Bi(λ, λ̄;µ, µ̄; x) χ(µ, µ̄) i = 1, 2, 3 (9a)

(B̂∗
i χ)(λ, λ̄) =

∫ ∫
c

dµ ∧ dµ̄ χ(µ, µ̄) Bi(µ, µ̄; λ, λ̄; x) (9b)

respectively.
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From (8), it is clear that the operators N̂i , i = 1, 2, 3, satisfy the following compatibility
constraints:

∂

∂xj
N̂i − [N̂i, B̂

∗
j ] − ∂

∂xi
N̂j +

[
N̂j , B̂

∗
i

]
+

[
R̂,

∂

∂xj
B̂∗

i − ∂

∂xi
B̂∗

j − [
B̂∗

i , B̂
∗
j

]] = 0. (10)

As equation (10) with (8) is nonlinear for N̂i , i = 1, 2, 3, it is difficult to find the general
solution, but the following special solutions can be easily found.

Proposition 1. If the dispersion operators satisfy

∂

∂xj
B̂∗

i − ∂

∂xi
B̂∗

j + [B̂∗
j , B̂

∗
i ] = 0 i 
= j = 1, 2, 3 (11)

then equation (10) has the solutions

(a) N̂i = ∂

∂λ̄
B̂∗

i i = 1, 2, 3. (12)

(b) N̂i = e−F(x)N̂0
i eF(x) ∂

∂xj
N̂0

i = 0 i, j = 1, 2, 3 (13)

satisfying equations

∂

∂xj
N̂i = [N̂i, B̂

∗
j ] i, j = 1, 2, 3 (14)

(c) N̂i = e−F(x) ∂

∂xi
MeF(x) (15)

in which M is an arbitrary matrix function of the variables xj (j = 1, 2, 3) and of the spectral
parameter λ. The operator F(x) ≡ ∑

i=1 ∂
−1
i B̂∗

i is a matrix-valued operator of the physical
variables xi (i = 1, 2, 3) and of the spectral parameter λ.

Proof.

Case (a). A simple calculation shows that

∂

∂xj
N̂i − [N̂i, B̂

∗
j ] − ∂

∂xi
N̂j + [N̂j , B̂

∗
i ] +

[
R̂,

∂

∂xj
B̂∗

i − [B̂∗
i , B̂

∗
j ] − ∂

∂xi
B̂∗

j

]

= c
∂

∂λ̄

[
∂

∂xj
B̂∗

i − [B̂∗
i , B̂

∗
j ] − ∂

∂xi
B̂∗

j

]

+

[
R̂,

∂

∂xj
B̂∗

i − ∂

∂xi
B̂∗

j − [B̂∗
i , B̂

∗
j ]

]
= 0. (16)

Case (b). It is easily verified that equation (10) is satisfied by virtue of (14) and, that the
general solution of (14) is given by (13).
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Case (c). When (11) is satisfied, equation (10) becomes

∂

∂xj
N̂i − [N̂i, B̂

∗
j ] − ∂

∂xi
N̂j + [N̂j , B̂

∗
i ] = 0. (17)

Inserting the ansatz

N̂i = e−F(x) N̂0
i (xi, µ, λ) eF(x)

into (17) yields

∂

∂xj
N̂0

i = ∂

∂xi
N̂0

j that is N̂0
i = ∂

∂xi
M. (18)

�
Equation (11) itself is a nonlinear equation which has to be solved to find the dispersion

relation first. When the operators B̂j reduce to multiplication by matrices, the following
relations:

∂

∂xi
B̂∗

j = 0 [B̂∗
i , B̂

∗
j ] = 0 i 
= j, 1, 2, 3 (19)

provide a solution to (11). Then

B̂∗
j = K(x, λ)−1 ∂

∂xj
K(x, λ) (20)

where K(x, λ) is an arbitrary matrix-valued function of the physical variables and the spectral
parameter. In particular, equation (19) can be considered as a special case of the general case
(20) when we select

K = exp

(∑
i=1

B̂∗
i xi

)
and [B̂∗

i , B̂
∗
j ] = 0 i 
= j, 1, 2, 3. (21)

The forms given by (19) and (20) furnish a particular solution to (11). In general the dispersion
operators B̂∗

j determined from (11), may be operators and functions of the physical variables
and the spectral parameter.

For simplicity, in the following sections, the dispersion operators B̂∗
j are always assumed

to be multiplicative operators and the only case (a) in proposition 1 is considered below.

3. Equivalence between the different methods

In this section, we shall show that for a large class of dispersion relations, the ∂̄-problem
whose spectral transform operator R has an inhomogeneous time and space dependence, is,
in fact, equivalent to a ∂̄-problem with variable normalization. We consider the case where
the operators N̂i , i = 1, 2, 3 take the form (12). It is clear that equation (6) degenerates to
the usual form when the dispersion operators take a polynomial dependence on the spectral
parameter. However, for general dispersion relations with singularities, it is not trivial.

At first, we consider the special case where the dispersion operators B̂∗
i assume the form

B̂i(λ) = Ii(λ) = Ai

λ − λi

i = 1, 2, 3 (22)

where the matrices Ai (i = 1, 2, 3) commute

[Ai,Aj ] = 0. (23)
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The dispersion relation selected, can be seen to satisfy (11). Accordingly, the kernels of the
integral operators N̂i (12) are now given by

Ni(µ, λ) = −1

2i

∂Ii(λ)

∂λ̄
δ(µ − λ) i = 1, 2, 3. (24)

By virtue of the identity

−1

2i

∫ ∫
c

dµ ∧ dµ̄ χ(µ, µ̄) δ(λ − µ) = χ(λ, λ̄) (25)

the action of integral operators N̂i has the simple expression∫
dµ ∧ dµ̄ χ(µ, µ̄)Ni(µ, µ̄; λ, λ̄) = ∂Bi(λ)

∂λ̄
χ(λ, λ̄). (26)

It is easily proved that the operators defined in this way satisfy the constraint (10).
In this case, equation (7) can be rewritten as

∂

∂xi
R(µ, µ̄; λ, λ̄; x) = Ii(µ)R(µ, µ̄; λ, λ̄; x)

−R(µ, µ̄; λ, λ̄; x) Ii(λ) − 1

2i

∂Ii(λ)

∂λ̄
δ(µ − λ). (27)

Solving this equation yields

R(µ, µ̄; λ, λ̄; x) = eF(µ)R0(µ, µ̄; λ, λ̄) e−F(λ)

− 1

2i
eF(µ)

∑
i

∂−1
i

[
e−F(µ) ∂

∂λ̄
Ii(λ) eF(λ)

]
e−F(λ) (28)

where the symbol ∂−1 denotes an integral operator, and where the matrix-valued function
F(µ, x) is defined by

F(µ, x) ≡
∑
i

Ai

µ − λi

xi .

In the constructions we follow here we shall assume that the kernel R0 is an integral operator
kernel of Fredholm type and have no essential singularities at the points where Ii have poles.

By virtue of (23), it can be shown that

∂−1
i [exp(−F(µ) + F(λ))] = − (µ − λi)(λ − λi)

λ − µ
A−1

i exp(−F(µ) + F(λ)) + ci (29)

where ci is a constant matrix which is a function of the spectral parameter only and which we
take to be zero in the following sections.

Inserting (29) and (28) into (6) yields

∂

∂λ̄
χ = ∂η

∂λ̄
+

∫ ∫
c

dµ ∧ dλ̄ χ(µ, µ̄) R(µ, µ̄; λ, λ̄; x)

= ∂η

∂λ̄
+

∫ ∫
c

dµ ∧ dµ̄ χ(µ, µ̄) eF(µ) R0(µ, λ) e−F(λ)

+
1

2i

∑
i

∫ ∫
c

dµ ∧ dµ̄ χ(µ, µ̄)
(µ − λi)(λ − λi)

λ − µ
A−1

i

∂

∂λ̄
Bi(λ)δ(µ − λ)

≡ ∂η

∂λ̄
+ I (1) + I (2). (30)
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The crucial problem comes from I (2) which has a very non-trivial role.
From the distribution identities [10]

∂

∂λ̄

(
(−1)nn!

π

1

(λ − µ)n+1

)
= δ(n,0)(λ − µ) ≡ ∂n

∂λn
δ(λ − µ) (31)

∂

∂λ̄

(
1

λ − λi

)
= πδ(λ − λi) (32)

the second term in (30) can be rewritten as

I (2) = − 1

4i

∑
i=1

∫ ∫
c

dµ ∧ dµ̄ χ(µ, µ̄)(µ − λi)(λ − λi) δ(λ − λi) δ
(1,0)
µ (µ − λ)

= 1

2

∑
i=1

[(
∂

∂λ
χ(λ, λ̄)

)
(λ − λi)

2δ(λ − λi) + χ(λ, λ̄)(λ − λi)δ(λ − λi)

]
. (33)

The role of the second term in (30) depends then on the behaviour of function χ in the vicinity
of λi (i = 1, 2, 3). It can be seen that the different behaviour of function χ in the vicinity of
λI (i = 1, 2, 3), will induce different normalizations at these special points. This situation is
different from the usual ∂̄-problem with variable normalization because the inhomogeneous
term cannot be arbitrarily selected, but must be determined by the term I (2).

Case A. χ regular at λI (i = 1, 2, 3). If the function χ is regular at λI (i = 1, 2, 3), we then
have

∂η

∂λ̄
= 0 χ(λ) → ai + O(λ − λi). (34)

In this case, expression (33) vanishes automatically. To make the problem (6) uniquely
solvable, we can take the canonical normalization

χ(λ) → 1 as λ → ∞. (35)

Case B: χ singular at λI (i = 1, 2, 3). Supposing that the function χ has poles at λI

(i = 1, 2, 3), namely

χk(λ) = ak

(λ − λk)m
+ O(λ − λk) m � 1 k = 1, 2, 3. (36)

Expression (33) becomes
−1

4i

∑
i=1

∫ ∫
c

dµ ∧ dµ̄ χ(µ, µ̄)(µ − λi)(λ − λi) δ(λ − λi) δ
(1,0)(µ − λ)

= 1

2

∑
i=1

[ −m

(λ − λk)m+1
(λ − λi)

2 +
1

(λ − λk)m
(λ − λi)

]
akδ(λ − λi)

λ → λk. (37)

Inserting (37) into (30) yields
∂

∂λ̄
χ = ∂η

∂λ̄
+

∫ ∫
c

dµ ∧ dλ̄ χ(µ, µ̄) R(µ, µ̄; λ, λ̄; x)

=
∫ ∫

c

dµ ∧ dµ̄ χ(µ, µ̄) eF(µ)R0(µ, λ) e−F(λ) +
∂η

∂λ̄

+
1

2

∑
i

[
(−m)

(λ − λk)m+1
(λ − λi)

2 +
1

(λ − λk)m
(λ − λi)

1

]
aiδ(λ − λi)

λ → λk. (38)
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For m = 1, the last term in (38) vanishes automatically. However, when m 
= 1, this term does
not vanish and in the vicinity of λ → λI , the rational function η is determined by requiring
the following relation:

∂

∂λ̄
χ → ∂η

∂λ̄
+

1

2

(1 − m)

(λ − λi)m−1
aiδ(λ − λi) λ → λi. (39a)

This means that

∂η

∂λ̄
→ 3

2

(m − 1)

(λ − λi)
aiδ(λ − λi) λ → λi. (39b)

Consequently, the ∂̄-problem (30) is transformed into the equivalent form

∂

∂λ̄
χ(λ, λ̄) = ∂η′

∂λ̄
+ R̂′χ = ∂η′

∂λ̄
+

∫ ∫
c

dλ ∧ dλ̄ χ(µ, µ̄)R′(µ, µ̄; λ, λ̄; x) (40)

where the integral operator R′ satisfies the following dependence on the physical variables xi :

∂

∂xi
R̂′ = [R̂′, B̂∗

i ] i = 1, 2, 3 (41)

and

∂

∂λ̄
χ → ∂η′

∂λ̄
. (42)

Without loss of generality, the general dispersion relation with poles can be taken as

B̂i(λ) = Ii(λ) =
∑
α

Aα(i)

λ − λα(i)

(43)

where the matrices Aa(i) (i = 1, 2, 3) commute. In the same way, we can show that the
∂̄-problem with dispersion relations (43) can be transformed into the corresponding one with
the physical variable dependence of R′ of form (41). From the above analysis, we have the
following theorem.

Theorem 2. For general multiplicative dispersion relation with the form (43), Leon’s extension
for the inverse spectral transform is equivalent to the ∂̄-problem with a variable normalization.

Before closing this section, we want to emphasize that a number of nonlinear partial
differential equations can be constructed by the ∂̄-dressing method whose dispersion relation
takes the form (43). For example, the Zakharov–Manakov system has the dispersion operators

B̂i(λ) = Ii(λ) = Ai

λ − λi

i = 1, 2, 3 (44)

the KP equation has

B̂1(λ) = 1

λ
B̂2(λ) = 1

2ε
[(λ − ε)−1 − (λ + ε)−1]

B̂3(λ) = 1

2ε2
[(λ − ε)−1 + (λ + ε)−1] − 2λ−1].

(45)

and the (2 + 1)-dimensional sine–Gordon equation has

B̂1(λ) = iλ B̂2(λ) = −iλ
1

σ
σ3 B̂3(λ) = − iσ

2λ
m. (46)

In the above formula, σ3 is the Pauli matrix, ε is a scalar factor and m a 2 × 2 diagonal matrix.
In the monograph [9], several well known nonlinear evolution systems have been constructed.
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4. Concluding remarks

In conclusion, we have extended Leon’s idea to the (2 + 1)-dimensional problem and shown
that for general x-independent dispersion relations with poles, Leon’s extension for the inverse
spectral transform is equivalent to the ∂̄-problem with variable normalization, at least in a
subclass of dispersion relations.
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